Tetrahedron Letters 51 (2010) 5950-5953

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

EVIER journal homepag

Desulfonyloxyiodination of arenesulfonic acids with *m*CPBA and molecular iodine

Yuhsuke Suzuki, Yoshihide Ishiwata, Katsuhiko Moriyama, Hideo Togo*

Graduate School of Science, Chiba University, Yayoi-cho 1-33, Inage-ku, Chiba 263-8522, Japan

ARTICLE INFO

ABSTRACT

Article history: Received 6 August 2010 Revised 3 September 2010 Accepted 10 September 2010 Available online 16 September 2010 Treatment of *p*-alkylbenzenesulfonic acids with *m*CPBA and molecular iodine gave *p*-alkyliodobenzenes in good to moderate yields via electrophilic *ipso*-substitution by the iodonium species (I^+) formed. This desulfonyloxyiodination was promoted by the addition of a catalytic amount of iodoarenes, such as *o*-iodobenzoic acid. The same treatment of dimethylbenzenesulfonic acids and trimethylbenzenesulfonic acids with *m*CPBA and molecular iodine proceeded smoothly both in the absence and in the presence of *o*-iodobenzoic acid to provide the corresponding monoiodo-dimethylbenzene and diiodo-dimethylbenzene, and diiodo-trimethylbenzene and triiodo-trimethylbenzene, in good to moderate yields, respectively. On the other hand, the same desulfonyloxyiodination of benzenesulfonic acid and *p*-chlorobenzenesulfonic acid with *m*CPBA and molecular iodine proceeded only in the presence of *o*-iodobenzoic acid to generate iodobenzene and *p*-chloroiodobenzene, respectively, in moderate yields.

© 2010 Elsevier Ltd. All rights reserved.

The use of hypervalent iodines in organic synthesis has been widely studied.1 (Diacetoxyiodo)benzene (DIB) and [(hydroxy)-(tosyloxy)iodo]benzene (HTIB) are the most popular and useful trivalent iodine reagents for organic synthesis because they are good alternatives to toxic heavy-metal oxidants.² On the other hand, today, the ArI-catalyzed oxidative conversion reactions of substrates, such as ketones, hydroquinones, and alcohols, with *m*-chloroperbenzoic acid (mCPBA) or Oxone[®] have become very popular³ because they are metal-free oxidative reactions and thus conform to environmentally benign organic synthesis. Recently, we reported an efficient method for the preparation of various [(hydroxy)(sulfonyloxy)iodo]arenes directly from iodoarenes with mCPBA and sulfonic acids at room temperature;⁴ the PhI-catalyzed, polymersupported PhI-catalyzed, and ion-supported PhI-catalyzed α -tosyloxylation of ketones with mCPBA and p-toluenesulfonic acid monohydrate;^{5a-c} the PhI-catalyzed and ion-supported PhI-catalyzed preparation of 3,4-dihydro-1H-2,1-benzothiazine 2,2-dioxides from *N*-methoxy-2-arylethanesulfonamides with mCPBA;^{5d,5e} and the ArI-catalyzed oxazole preparation from ketones and nitriles with mCPBA^{5f} or Oxone[®].^{5g}

Herein, as part of our study on the catalytic use of organoiodines (I) in organic synthesis, we would like to report the desulfonyloxyiodination of arenesulfonic acids with *m*CPBA and molecular iodine both in the presence and in the absence of *o*-iodobenzoic acid. First, to an acetonitrile solution of *p*-toluenesulfonic acid monohydrate (1 mmol) were added molecular iodine, molecular iodine/*tert*-BuOOH (\sim 70%), and molecular iodine/H₂O₂-urea,

* Corresponding author.

E-mail address: togo@faculty.chiba-u.jp (H. Togo).

and the reaction mixtures were stirred at 50 °C for 8 h, as shown in Table 1 (entries 1, 3, and 4). However, *p*-iodotoluene was not formed at all. When the same reaction was carried out with molecular iodine/Oxone[®], *p*-iodotoluene was obtained in 23% yield (entry 2). Moreover, when *p*-toluenesulfonic acid monohydrate was treated with NIS (*N*-iodosuccinimide) or molecular iodine/*m*CPBA in acetonitrile, *p*-iodotoluene was obtained in moderate yields, as shown in entries 5–8. When *o*-iodobenzoic acid (0.1 equiv or 1.1 equiv) was added to the solution, the yield of *p*-iodotoluene was increased to 75% (entries 9 and 10).⁶ On the other hand,

Table 1

Desulfonyloxyiodination of p-toluenesulfonic acid

	CH ₃	CH ₃	
	Additives		
	CH ₃ CN (3 mL), dark	\searrow	
	1a SO ₃ H•H ₂ O 50 °C, 8 h	2a ¹	
Entry	Additives (equiv)	Yield (%)	
1	I ₂ (1.2)	0	
2	I ₂ (1.2), Oxone (1.1)	23	
3	I ₂ (1.2), ^t BuOOH (1.1)	0	
4	I ₂ (1.2), H ₂ O ₂ ·urea (1.1)	0	
5	NIS (1.1)	58 (33:20 ^a :5 ^b)	
6	NIS (1.1), BF ₃ ·Et ₂ O (2.2)	21	
7	I ₂ (1.5), mCPBA (1.4)	49	
8	I ₂ (2.0), mCPBA (1.1)	45	
9	I_2 (1.2), mCPBA (1.1), o-HO ₂ CC ₆ H ₄ I (0.1)	61	
10	I ₂ (1.2), mCPBA (1.1), o-HO ₂ CC ₆ H ₄ I (1.1)	75 (46:22 ^a :7 ^b)	

^a Yield of 1,5-diiodo-2-methylbenzene.

^b Yield of 1,2-diiodo-4-methylbenzene.

^{0040-4039/\$ -} see front matter \circledcirc 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2010.09.034

5951

p-bromotoluene was not formed at all, when a solution of *p*-toluenesulfonic acid monohydrate with Br₂ (1.2 equiv)/Oxone[®] (1.1 equiv), NBS (1.1 equiv), or Br₂ (1.2 equiv)/mCPBA (1.1 equiv)/mCPBAo-iodobenzoic acid (1.1 equiv) in acetonitrile was warmed at 50 °C. Thus, the desulfonyloxyiodination of arenesulfonic acids with an oxidant proceeds specifically in the presence of molecular iodine or iodine analogs. In the present desulfonyloxyiodination of p-toluenesulfonic acid monohydrate with mCPBA (1.1 equiv) and molecular iodine (1.2 equiv) in acetonitrile, the effect of iodoarenes, such as iodobenzene, p-iodobenzoic acid, p-chloroiodobenzene, p-iodotoluene, and o-iodobenzoic acid was studied and the results are shown in Table 2. The present desulfonyloxyiodination proceeded smoothly without iodoarene to generate *p*-iodotoluene in 51% yield at 50 °C (entry 1). The addition of iodobenzene (1.1 equiv) promoted the reaction slightly to give *p*-iodotoluene in 60% yield at 50 °C (entry 3), while the same reaction at room temperature was rather slow (entry 2). Entries 5 and 9 indicate that a catalytic amount of iodobenzene and o-iodobenzoic acid promoted the present desulfonyloxyiodination. However, the reaction with o-iodobenzoic acid is practically convenient, as o-iodobenzoic acid can be removed from the reaction mixture by washing with basic aq Na₂SO₃ solution.

Then, *p*-ethylbenzenesulfonic acid, *p*-octylbenzenesulfonic acid, *p*-dodecylbenzenesulfonic acid, and *p*-(β-bromoethyl)benzenesulfonic acid were treated with *m*CPBA and molecular iodine both in the presence and in the absence of a catalytic amount of o-iodobenzoic acid (0.1 equiv) in acetonitrile at 50 °C or refluxing conditions to provide p-iodoethylbenzene, p-iodooctylbenzene, p-iododocecylbenzene, and 4-(2'-bromoethyl)-1-iodobenzene, respectively, in moderate to good yields (methods \mathbf{A} or \mathbf{B}^6). In each reaction, the addition of o-iodobenzoic acid increased the yield of the desulfonyloxyiodination product in the range of 10-35%, as shown in Table 3 (entries 3-10). Then, under the same conditions, mesitylenesulfonic acid, 2,5-dimethylbenzenesulfonic acid, and 2,4-dimethylbenzenesulfonic acid were treated with mCPBA and molecular iodine both in the presence and in the absence of o-iodobenzoic acid to generate 1.3-dijodo-2.4.6-trimethylbenzene and 1.3.5-trijodo-2.4.6-trimethylbenzene: 2.5-dimethyl-1-iodobenzene and 1.4-diiodo-2,5-dimethylbenzene; and 2,4-dimethyl-1-iodobenzene and 1,5-diiodo-2,4-dimethylbenzene, respectively, in good yields (entries 11-24). Under acetonitrile refluxing conditions, polyiodoarenes were obtained as major products (entries 14 and 19). The same treatment of 2-iodo-5-methylbenzenesulfonic acid both in the presence and in the absence of o-iodobenzoic acid, furnished 1,2-diiodo-4-methylbenzene in good to moderate yields, as shown in entries 25 and 26. In those reactions, o-iodobenzoic acid induced the desulfonyloxyiodination to provide iodoarenes in better yields than that

Table 2

Desulfonyloxyiodination of p-toluenesulfonic acid

	$\begin{array}{c} CH_{3} & \qquad & \underset{mCPBA}{Arl} \\ & & \underset{1a}{SO_{3}H} \cdotH_{2}O & \underset{50}{\overset{O}C}C, \end{array}$	iv.) mL), dark	
Entry	Arl (equiv)	Time	Yield (%)
1	_	8 h	51
2	Ph I (1.1)	16 h ^a	7
3	PhI (1.1)	16 h	60
4	$p-HO_2CC_6H_4I(1.1)$	8 h	36
5	PhI (0.1)	8 h	60
6	$p-HO_2CC_6H_4I(0.1)$	8 h	38
7	$p-ClC_{6}H_{4}I(0.1)$	8 h	44
8	$p-H_3CC_6H_4I(0.1)$	8 h	36
9	$o-HO_2CC_6H_4I(0.1)$	8 h	61

^a Reaction was carried out at rt.

Table 3

Desulfonyloxyiodination of arenesulfonic acids

Desulton	yloxylodination of arenesu	lionic acids					
$o-HO_2CC_6H_4I$ (0.1 equiv.) mCPBA (1.1 equiv.), I_2 (1.2 equiv.)							
	Ar $-SO_3H = \frac{mCPBA}{CH_3CN}$	Ar — I					
	2						
Entry	Ar-	Time	Method	Yield (%)			
1	сн _з -	8 h	A	61			
2 3		8 h ^a 8 h	A A	51 63			
4	C₂H₅ -<	8 h ^a	A	43			
5 6	C ₈ H ₁₇	8 h 8 hª	B (reflux) B (reflux)	81 59			
7		8 h	B (reflux)	88			
8	$C_{12}H_{25}$	8 h ^a	B (reflux)	53			
9 10	BrH ₂ CH ₂ C	8 h 8 h ^a	B (reflux) B (reflux)	69 62			
10	CH3	8 h	A (Tenux)	76 (58 ^b :18 ^c)			
12		63 h ^d	A	62 (53 ^b :9 ^c)			
13	СН₃ –∕	8 h ^a	Α	55 (27 ^b :28 ^c)			
14	`CH₃	8 h	A (reflux)	72 (15 ^b :57 ^c)			
15	CH ₃	8 h	Α	64 ^e			
16	\succ	16 h	A	49 (42:7 ^e) 78 ^e			
17 18		8 h 63 h ^d	A A	78° 68 (53:12°)			
19	℃H ₃	8 h	A (reflux)	94 ^e			
20		8 h ^a	Α	66 ^e			
21	СН3-	8 h	Α	86 ^f			
22	° 44	8 h 8 hª	A (reflux)	96 ^f 76 ^f			
23 24	СН ₃	8 nº 63 h ^d	A A	76 [.] 70 (38:32 ^f)			
25	CH₂	8 h	A (reflux)	80			
26	<u> </u>	8 h ^a	A	51			
	ì						
27 28		8 h ^g 8 h ^a	B (reflux) B (reflux)	40 7			
29		8 h ^g	B (reflux)	45			
30		8 h ^a	B (reflux)	5			
31	сн _з о-	8 h	A (rt)	67 ^h			
32 33		8 h ^a 8 h ^a	A (reflux) A (rt)	69 (47 ^h :22 ⁱ) 67 ^h			
33 34		8 h	A (IL) A	65			
35		8 h ^a	A	62			
36		8 h	A	0			
36	IIJ	8 h ^a	A	0			
	CH ₃ CH ₃						
20	Ϋ́λ	<u>.</u>		0			
38	Δ	8 h	A	0			
	0 ^w						

Methods A and B: see to experimental procedure (Ref. 6).

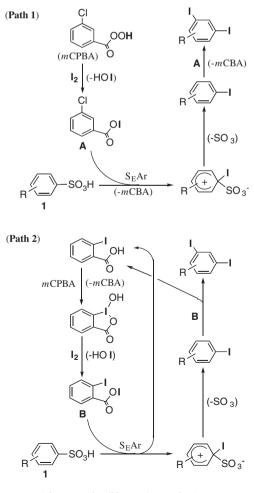
^a Without o-HO₂CC₆H₄I.

^b Yield of 1,3-diiodo-2,4,6-trimethylbenzene.

Yield of 1,3,5-triiodo-2,4,6-trimethylbenzene.

^d Solvent (30 mL) was used.

- ^e Yield of 1,4-diiodo-2,5-dimethylbenzene.
- ^f Yield of 1,5-diiodo-2,4-dimethylbenzene.


^g o-HO₂CC₆H₄I (1.1 equiv) was used.

h Yield of 2,4-diiodo-1-methoxybenzene.

ⁱ Yield of 2,4,6-triiodo-1-methoxybenzene.

in the absence of *o*-iodobenzoic acid. Moreover, when benzenesulfonic acid and *p*-chlorobenzenesulfonic acid were treated with *m*CPBA and molecular iodine under the same conditions without *o*-iodobenzoic acid, the yields of iodobenzene and *p*-chloroiodobenzene were low. However, when the reactions were carried out in the presence of *o*-iodobenzoic acid, iodobenzene, and *p*-chloroiodobenzene were obtained in moderate yields, respectively (entries 27–30). *p*-Methoxybenzenesulfonic acid, which has an electron-rich aromatic group, reacted with molecular iodine and *m*CPBA both in the presence and in the absence of *o*-iodobenzoic acid at room temperature to give 2,4-diiodo-1-methoxybenzene in good yields (entries 31 and 33). When the same reaction was carried out under acetonitrile refluxing conditions, a mixture of 2,4-diiodo-1-methoxybenzene and 2,4,6-triiodo-1-methoxybenzene was obtained (entry 32). The same treatment of 1-naphthalenesulfonic acid gave 1-iodonaphthalene in good yields both in the presence and in the absence of o-iodobenzoic acid (entries 34 and 35), while 2-iodonaphthalene was not formed at all from the reaction with 2-naphthalenesulfonic acid (entries 36 and 37). This result is closely related to that 1-naphthalenesulfonic acid which is a kinetically controlled product and is isomerized to 2-naphthalenesulfonic acid, a thermodynamically stable product, at high temperature. The desulfonyoxyiodination of 3-nitrobenzenesulfonic acid and 2,4-dinitrobenzenesulfonic acid with *m*CPBA and molecular iodine both in the presence and in the absence of o-iodobenzoic acid did not occur at all, as the electrophilic ipso-substitution of 3-nitrobenzenesulfonic acid and 2,4-dinitrobenzenesulfonic acid (S_FAr) did not proceed due to their low electron density on the aromatics. Aliphatic sulfonic acids, such as camphorsulfonic acid, also did not react with molecular iodine and *m*CPBA both in the presence and in the absence of o-iodobenzoic acid (entry 38). Thus, the present desulfonyloxyiodination reaction with molecular iodine and mCPBA both in the presence and in the absence of o-iodobenzoic acid occurs only in arenesulfonic acids, particularly those bearing electron-rich aromatic groups.

When toluene was treated with I_2 (1.2 equiv)/*m*CPBA (1.1 equiv)/*o*-iodobenzoic acid (0.1 equiv) in acetonitrile at 50 °C for 8 h under the same conditions, a mixture of *p*-iodotoluene and *o*-iodotoluene was obtained only in 2% yield. Moreover, when *p*-iodotoluene was treated with I_2 (1.2 equiv)/*m*CPBA (1.1 equiv)/*o*-

Scheme 1. Plausible reaction mechanisms.

iodobenzoic acid (0.1 equiv) in acetonitrile at 50 °C for 8 h under the same conditions, p-iodotoluene was recovered in high yield and 1,2-diiodo-4-methylbenzene was not formed at all. Based on these results and entries 25 and 26, we believe the present reaction proceeds through the reaction mechanism, shown in Scheme 1.⁷ In the absence of o-iodobenzoic acid, the desulfonyloxyiodination proceeds through path 1. *m*-Chlorobenzoyl hypoiodite A reacts with arenesulfonic acids 1 to generate iodoarenes via electrophilic ipso-substitution by the iodonium species. On the other hand, the desulfonyloxyiodination of arenesulfonic acids **1** with *m*CPBA and molecular iodine in the presence of o-iodobenzoic acid proceeds through both path 1 and path 2. Thus, both *m*-chlorobenzoyl hypoiodite A and o-iodobenzoyl hypoiodite B react with arenesulfonic acids 1 to give iodoarenes, and further electrophilic iodination of the formed iodoarenes with both *m*-chlorobenzoyl hypoiodite **A** and o-iodobenzoyl hypoiodite **B** occurs to provide polyiodoarenes. depending on the electron density of the iodoarenes formed.

In conclusion, treatment of *p*-alkylbenzenesulfonic acids with *m*CPBA and molecular iodine gave *p*-alkyliodobenzenes in good to moderate yields via electrophilic *ipso*-substitution by the iodonium species. This desulfonyloxyiodination was promoted by the addition of a catalytic amount of iodoarenes, such as *o*-iodobenzoic acid. Further synthetic study of the present reaction is underway in this laboratory.

Acknowledgments

The financial support of a Grant-in-Aid for Scientific Research (No. 20550033) from the Ministry of Education, Science, Sports, and Culture in Japan and Iodine Research Project in Chiba University is gratefully acknowledged.

References and notes

- Varvoglis, A. Hypervalent lodine in Organic Synthesis; Academic Press: San Diego, 1997.
- Reviews: (a) Moriarty, R. M.; Vaid, R. K. Synthesis 1990, 431; (b) Stang, P. J. Angew. Chem. Int., Ed. Engl. 1992, 31, 274; (c) Prakash, O.; Saini, N.; Sharma, P. K. Synlett 1994, 221; (d) Kitamura, T. Yuki Gosei Kagaku Kyokaishi 1995, 53, 893; (e) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123; (f) Umemoto, T. Chem. Rev. 1996, 96, 1757; (g) Kita, Y.; Takada, T.; Tohma, H. Pure Appl. Chem. 1996, 68, 627; (h) Togo, H.; Hoshina, Y.; Nogami, G.; Yokoyama, M. Yuki Gosei Kagaku Kyokaishi 1997, 55, 90; (i) Varvoglis, A. Tetrahedron 1997, 53, 1179; (j) Zhdankin, V. V. Rev. Heteroat. Chem. 1997, 17, 133; (k) Muraki, T.; Togo, H.; Yokoyama, M. Rev. Heteroat. Chem. 1997, 17, 213; (l) Kitamura, T.; Fujiwara, Y. Org. Prep. Proced. Int. 1997, 29, 409; (m) Varvoglis, A.; Spyroudis, S. Synlett 1998, 221; (n) Zhdankin, V. V.; Stang, P. J. Tetrahedron 1998, 54, 10927; (o) Moriarty, R. M.; Prakash, O. Adv. Heterocycl. Chem. 1998, 69, 1; (p) Togo, H.; Katolnji, M. Synlett 2001, 565; (q) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523; (r) Richardson, R. D.; Wirth, T. Angew. Chem., Int. Ed. 2006, 45, 4402; (s) Ladziata, U.; Zhdankin, V. Synlett 2007, 527.
- Reviews: (a) Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 4229; (b) Dohi, T.; 3. Kita, Y. Chem. Commun. 2009, 2073; (c) Uyanik, M.; Ishihara, K. Chem. Commun. 2009, 2086; Papers: (d) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244; (e) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem., Int. Ed. 2005, 44, 6193; (f) Li, J.; Chan, P. W. H.; Che, C. Org. Lett. 2005, 7, 5801; (g) Thottumkara, A. P.; Bowsher, M. S.; Vinod, T. K. Org. Lett. 2005, 7, 2933; (h) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.; Kita, Y. Chem. Commun. 2007, 1224; (i) Richardson, R. D.; Page, T. K.; Altermann, S.; Paradine, S. M.; French, A. N.; Wirth, T. Synlett 2007, 538; (j) Yakura, T.; Konishi, T. Synlett 2007, 765; (k) Sheng, J.; Li, X.; Tang, M.; Gao, B.; Huang, G. Synthesis 2007, 1165; (l) Chen, C.; Feng, X.; Zhang, G.; Zhao, Q.; Huang, G. Synthesis 2008, 3205; (m) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251; (n) Miyamoto, K.; Sei, Y.; Yamaguchi, K.; Ochiai, M. J. Am. Chem. Soc. 2009, 131, 1382; (o) Ojha, L. R.; Kudugunti, S.; Maddukuri, P. P.; Kommareddy, A.; Gunna, M. R.; Dokuparthi, P.; Gottam, H. B.; Botha, K. K.; Parapati, D. R.; Vinod, T. K. Synlett 2009, 117; (p) Dohi, T.; Minamitsuji, Y.; Maruyama, A.; Hirose, S.; Kita, Y. Org. Lett. 2008, 10, 3559; (q) Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470; (r) Uyanik, M.; Yasui, T.; Ishihara, K. Bioorg. Med. Chem. Lett. 2009, 19, 3848; (s) Yakura, T.; Tian, Y.; Yamauchi, Y.; Omoto, M.; Konishi, T. Chem. Pharm. Bull. 2009, 57, 252.
- 4. Yamamoto, Y.; Togo, H. Synlett 2005, 2486.
- (a) Yamamoto, Y.; Togo, H. Synlett 2006, 798; (b) Yamamoto, Y.; Kawano, Y.; Toy, P. H.; Togo, H. Tetrahedron 2007, 63, 4680; (c) Akiike, J.; Yamamoto, Y.; Togo, H. Synlett 2007, 2168; (d) Moroda, A.; Togo, H. Synthesis 2008, 1257; (e)

Ishiwata. Y.; Togo, H. Tetrahedron Lett. 2009, 50, 5354; (f) Kawano, Y.; Togo, H. Tetrahedron 2009, 65, 6251; (g) Ishiwata, Y.; Togo, H. Tetrahedron 2009, 65, 10720

6 Typical procedure for desulfonyloxyiodonation of arenesulfonic acid: Method A: To a solution of p-toluenesulfonic acid (1.0 mmol), o-iodobenzoic acid (0.1 mmol), and mCPBA (65% purity, 1.1 mmol) in CH₃CN (3 mL) was added I₂ (1.2 mmol). The mixture was stirred for 8 h under dark conditions at 50 °C. Then the reaction mixture was poured into saturated aq Na2SO3 solution and extracted with ethyl acetate (15 mL \times 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (eluent: hexane) to afford pure 4-iodotoluene in 61% yield.

Typical procedure for desulfonyloxyiodonation of arenesulfonic acid: Method B: A solution of benzenesulfonic acid (1.0 mmol), o-iodobenzoic acid (1.1 mmol), and mCPBA (65% purity, 1.1 mmol) in CH₃CN (3 mL) was stirred for 1.5 h at room temperature. Then, I2 (1.2 mmol) was added. The obtained mixture was stirred for 8 h under dark conditions at refluxing conditions. Then the reaction mixture was poured into saturated aq Na₂SO₃ solution and extracted with ethyl acetate (15 mL \times 3). The organic layer was dried over Na₂SO₄. After removal of the solvent under reduced pressure, the residue was chromatographed on silica gel (eluent: hexane) to afford pure iodobenzene in 40% yield.

4-Iodotoluene: mp 34-35 °C (commercial, mp 33-35 °C). IR (nujol): 2928, 1479, 1012, 796 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.29 (3H, s), 6.92 (2H, d, J = 8.2 Hz), 7.56 (2H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃): $\delta = 20.99$, 90.17, 131.17, 137.19, 137.42.

Iodobenzene: oil. IR (neat): 729, 684 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.11 (t, J = 7.7 Hz, 2H), 7.32 (t, J = 7.7 Hz, 1H), 7.70 (d, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 94.38, 127.45, 130.24, 137.47.

1,3-Diiodo-2,4,6-trimethylbenzene: mp 79–80 °C (lit.⁸ 82 °C). IR (KBr): 2975. 1440, 1375, 860 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (6H, s), 2.92 (3H, s), 7.00 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ = 29.88, 39.54, 101.16, 127.89, 141.83, 144.11; MS (APPI): *m*/*z* [M⁺] calcd for C₉H₁₀I₂: 371.8866; found: 371.8869.

1,3,5-Triodo-2,4,6-trimethylbenzene: mp 205–206 °C (lit.⁸ 206–207 °C). IR (nujol): 1328, 1514, 936, 605 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 3.01 (9H, ³C NMR (100 MHz, CDCl₃): δ = 39.54, 101.16, 144.11; MS (APPI): m/z [M⁺] s): calcd for C₉H₉I₃: 497.7833; found: 497.7837.

1,4-Diiodo-2,5-dimethylbenzene: mp 102-103 °C (lit.9 mp 103-104 °C). IR (KBr): 2980, 1470, 1330, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.34 (6H, s), 7.65 (2H, s); ¹³C NMR (100 MHz, CDCl₃): δ = 26.85, 100.60, 139.22, 140.61; MS (APPI): *m*/*z* [M⁺] calcd for C₈H₈I₂:357.8710; found: 357.8712.

1-lodo-2,5-dimethylbenzene: oil (lit.⁸ oil). IR (neat): 2918, 1487, 1034, 808 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.23 (3H, s), 2.38 (3H, s), 7.04 (1H, d, J = 8.0 Hz), 7.11 (1H, d, J = 8.0 Hz), 7.65 (1H, s); 250 (NH, s), 100 (Hz, G) (100 (Hz, CDCl₃); $\delta = 20.27$, 27.48, 101.03, 128.94, 129.34, 137.17, 138.12, 139.29; MS (APPI): m/z [M⁺] calcd for C₈H₉I: 231.9743; found: 231.9746.

1,5-Diiodo-2,4-dimethylbenzene: mp 70-71 °C (lit,¹⁰ mp 71-72 °C). IR (KBr) 2980, 1470, 1330, 880 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.37 (6H, s), 7.09 (1H, s), 8.17 (1H, s); ¹³C NMR (100 MHz, CDCl₃): δ = 27.36, 97.79, 130.73, 141.42, 147.09; MS (APPI): m/z [M⁺] calcd for C₈H₈I₂: 357.8710; found: 357.8713.

2.4-Dimethyl-1-iodobenzene: oil (lit.⁸ oil). IR (neat): 2917, 1490, 1034, 809 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 2.26 (3H, s), 2.38 (3H, s), 6.69 (1H,

d, J = 8.0 Hz), 7.06 (1H, s), 7.66 (1H, d, J = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 20.83, 27.90, 96.98, 128.32, 130.75, 138.06, 138.61, 140.99; MS (APPI): m/z [M⁺] calcd for C₈H₉I: 234.9743; found: 231.9747.

4-*I*odo-1-*c*hlorobenzene: mp 54–55 °C (commercial, mp 53–54 °C). IR (nujol): 2923, 1469, 1377, 1091, 1006, 809 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (2H, d, *J* = 8.6 Hz), 7.61 (2H, d, *J* = 8.6 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 91.13, 130.53, 134.19, 138.77,

1,2-Diiodo-4-methylbenzene: oil. IR (neat): 2916, 1449, 1001, 807 cm⁻¹; ¹H MMR (400 MHz, CDCl₃): δ = 2.24 (3H, s), 6.84 (1H, dd, J = 1.4, 8.2 Hz), 7.71 (1H, d, J = 8.2 Hz), 7.72 (1H, d, J = 1.4 Hz,); ¹³C NMR (100 MHz, CDCl₃): δ = 20.46, 103.55, 107.69, 130.34, 138.93, 139.52, 140.05; MS (APPI): m/z [M⁺] calcd for C7H6I2: 343.8553; found: 343.8554.

4-Ethyl-1-iodobenzene: oil. IR (neat): 2964, 1484, 1006, 818 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 1.21 (3H, t, *J* = 7.7 Hz), 2.59 (2H, q, *J* = 7.7 Hz), 6.95 (2H, q, *J* = 8.2 Hz), 7.59 (2H, d, *J* = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 15.43, 28.39, 90.51, 130.01, 137.28, 143.80; MS (APPI): *m*/*z* [M⁺] calcd for C₈H₉I₁: 231.9743; found: 231.9743.

4-(2'-Bromoethyl)-1-iodobenzene: oil. IR (neat): 2961, 1484, 1007, 803 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 3.10 (2H, t, *J* = 7.7 Hz), 3.53 (2H, t, *J* = 7.7 Hz), 6.97 (2H, d, *J* = 8.2 Hz), 7.64 (2H, d, *J* = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 32.46, 38.67, 92.26, 130.68, 137.64, 138.38; MS (APPI): m/z [M⁺] calcd for C₈H₈BrI: 309.8849; found: 309.8848.

1-lodonaphthalene: oil (commercial, mp 9 °C). IR (neat): 3051, 1556, 1498 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ = 7.17 (1H, t, J = 7.7 Hz), 7.51 (1H, t, J = 8.2 Hz), 7.57 (1H, t, J = 8.2 Hz), 7.76 (1H, d, J = 7.7 Hz), 7.82 (1H, d, J = 8.2 Hz), 8.02–8.12 (2H, m); ¹³C NMR (100 MHz, CDCl₃): δ = 99.57, 126.66, 126.79, 127.65, 128.49, 128.93, 132.06, 134.05, 134.28, 137.36.

1-Iodo-4-octylbenzene: oil. IR (neat): 2925, 1483, 1006, 795 cm⁻¹; ¹H NMR (400 MHz, $CDCl_3$): δ = 7.56 (2H, d, J = 1.21 (3H, t, J = 7.70 Hz), 1.18–1.36 (m, 10H), 1.51–1.61 (m, 2H), 8.2 Hz), 2.52 (2H, t, J = 7.7 Hz), 6.99 (2H, d, J = 8.2 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 14.11, 22.65, 29.18, 29.22, 29.41, 31.28, 31.85, 35.42, 90.49, 130.52, 137.18, 142.46; MS (APPI): m/z [M⁺] calcd for C₁₄H₂₁I: 316.0682; found: 316.0682.

1-lodo-4-dodecylbenzene (mixture): oil. IR (neat): 2925, 1483, 1464, 1006, 818 cm⁻¹; MS (APPI): *m*/*z* [M⁺] calcd for C₁₈H₂₉I: 372.1308; found: 372.1314. 1,5-Diiodo-2-methoxybenzene: mp 67,5-68,5 °C (lit.¹¹ mp 68–69 °C); IR (KBr) 2930, 1565, 1470, 1280, 800 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) d = 3.85 (3H, s), 6.58 (1H, d, J = 8.7 Hz), 7.57 (1H, dd, J = 8.7, 2.0 Hz), 8.04 (1H, d, J = 2.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ = 56.41, 83.23, 87.36, 112.75, 138.17, 146.60, 158.14; MS (APPI): *m*/*z* [M⁺] calcd for C₇H₆OI₂: 359.8503; found: 359.8495.

- A referee pointed out that the present reaction proceeds through the desulfonation of arenesulfonic acids to form arenes, followed by iodination of the arenes formed. However, when p-iodotoluene was treated with I2 (1.2 equiv)/mCPBA (1.1 equiv)/o-iodobenzoic acid (0.1 equiv) in acetonitrile at 50 °C for 8 h under the same conditions, *p*-iodotoluene was recovered in high yield and 1,2-diiodo-4-methylbenzene was not formed at all. Based on these results and entries 25 and 26, we believe the present reaction proceeds through the reaction mechanism shown in Scheme 1.
- Kajigaeshi, S.; Kakinami, T.; Moriwaki, M.; Tanaka, T.; Fujisaki, S.; Okamoto, T. Bull. Chem. Soc. Jpn. 1989, 62, 439.
- Suzuki, H.; Goto, R. Bull. Chem. Soc. Jpn. 1963, 36, 389.
- Ogata, Y.; Aoki, K. J. Am. Chem. Soc. **1968**, 90, 6187.
 Kitamura, T.; Abe, T.; Fujiwara, Y.; Yamaji, T. Synthesis **2003**, 2, 213.